技术 | 气隙/气隙磁通量在电机中的影响与合理设

2020-10-14 11:20 YWYF 62

气隙是电机设计中的主要问题之一,电磁器件的磁路中含有低电阻的材料(如铁),这样可以最大限度地减少产生磁场所需的电能。磁路中的间隙通常是不可避免的,它们含有空气,这提供了对磁通量的高电阻,这样的间隙需要在磁化电流和相关的电损耗方面的是有害的。

气隙是磁路的非磁性部分,它通常与电路的其余部分串联在一起,这样就有很大一部分磁通量流过间隙。气隙可填充非磁性材料,如气体、水、真空、塑料、木材等,而不一定只填充空气。

气隙的影响

定子和转子是电机的两个主要部件,它们是磁耦合的,能量通过磁场从两边通过机器传递的,气隙小可以带来低噪音,较小的不平衡磁拉力。由于气隙磁阻的增加,磁通量扩散到周围介质中,会导致磁通边缘效应,这是一种不必要的现象,它会增加位于空气间隙附近的导体中的邻近和涡流损耗。气隙会引起转子与定子之间磁链的减少,被看作是一种损耗。由于定子和转子绕组之间的磁通量降低,从而削弱磁能的传递,大的气隙意味着更多的磁化电流和低的功率因数,大气隙的正侧对电动机的过载能力有较好的影响。

技术 | 气隙/气隙磁通量在电机中的影响与合理设计

气隙可能是确保设备正确性能的一个组成部分,它应该尽可能小,气隙的形式、形状和大小取决于磁路的类型和形状,这由工作原理、性能、尺寸、效率和许多其他技术因素决定。在旋转机械中,由于定子和转子之间需要物理运动,气隙通常是不需要的,但不可避免,工业机器的最小实际气隙约为0.2毫米。在继电器中,气隙通常是一个不可分割的部分,有助于固定部分(如绕组和磁芯)和主动电枢之间的运动,机械地驱动主电触点的连接或断开。在传统的变压器中,通常避免气隙,变压器的作用是将一次绕组的能量瞬间输送到二次绕组,而无需储能。

电机的气隙

气隙是电机的转子和定子之间的间隙,一个“自由开放的空间”将两个电机部件物理分离,由于转子和定子不是磁耦合的,所以它们之间存在空气间隙。当适当的供给(取决于机器的类型)时,磁场被建立并连接定子和转子,由于存在气隙,某些部分磁场通过转子或定子,但不是两者都通过,这部分磁通被称为漏磁或气隙磁通(因为它单独通过气隙)。这种漏磁通在功率传输中不起作用,因为它与定子和转子都没有连接,为建立漏磁通而产生的电流使机器功率损失。

技术 | 气隙/气隙磁通量在电机中的影响与合理设计